73 research outputs found

    A machine learning driven solution to the problem of perceptual video quality metrics

    Get PDF
    The advent of high-speed internet connections, advanced video coding algorithms, and consumer-grade computers with high computational capabilities has led videostreaming-over-the-internet to make up the majority of network traffic. This effect has led to a continuously expanding video streaming industry that seeks to offer enhanced quality-of-experience (QoE) to its users at the lowest cost possible. Video streaming services are now able to adapt to the hardware and network restrictions that each user faces and thus provide the best experience possible under those restrictions. The most common way to adapt to network bandwidth restrictions is to offer a video stream at the highest possible visual quality, for the maximum achievable bitrate under the network connection in use. This is achieved by storing various pre-encoded versions of the video content with different bitrate and visual quality settings. Visual quality is measured by means of objective quality metrics, such as the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Visual Information Fidelity (VIF), and others, which can be easily computed analytically. Nevertheless, it is widely accepted that although these metrics provide an accurate estimate of the statistical quality degradation, they do not reflect the viewer’s perception of visual quality accurately. As a result, the acquisition of user ratings in the form of Mean Opinion Scores (MOS) remains the most accurate depiction of human-perceived video quality, albeit very costly and time consuming, and thus cannot be practically employed by video streaming providers that have hundreds or thousands of videos in their catalogues. A recent very promising approach for addressing this limitation is the use of machine learning techniques in order to train models that represent human video quality perception more accurately. To this end, regression techniques are used in order to map objective quality metrics to human video quality ratings, acquired for a large number of diverse video sequences. Results have been very promising, with approaches like the Video Multimethod Assessment Fusion (VMAF) metric achieving higher correlations to useracquired MOS ratings compared to traditional widely used objective quality metrics

    EEG-based biometrics: Effects of template ageing

    Get PDF
    This chapter discusses the effects of template ageing in EEG-based biometrics. The chapter also serves as an introduction to general biometrics and its main tasks: Identification and verification. To do so, we investigate different characterisations of EEG signals and examine the difference of performance in subject identification between single session and cross-session identification experiments. In order to do this, EEG signals are characterised with common state-of-the-art features, i.e. Mel Frequency Cepstral Coefficients (MFCC), Autoregression Coefficients, and Power Spectral Density-derived features. The samples were later classified using various classifiers, including Support Vector Machines and k-Nearest Neighbours with different parametrisations. Results show that performance tends to be worse for crosssession identification compared to single session identification. This finding suggests that temporal permanence of EEG signals is limited and thus more sophisticated methods are needed in order to characterise EEG signals for the task of subject identificatio

    Automated Detection of Substance-Use Status and Related Information from Clinical Text

    Get PDF
    This study aims to develop and evaluate an automated system for extracting information related to patient substance use (smoking, alcohol, and drugs) from unstructured clinical text (medical discharge records). The authors propose a four-stage system for the extraction of the substance-use status and related attributes (type, frequency, amount, quit-time, and period). The first stage uses a keyword search technique to detect sentences related to substance use and to exclude unrelated records. In the second stage, an extension of the NegEx negation detection algorithm is developed and employed for detecting the negated records. The third stage involves identifying the temporal status of the substance use by applying windowing and chunking methodologies. Finally, in the fourth stage, regular expressions, syntactic patterns, and keyword search techniques are used in order to extract the substance-use attributes. The proposed system achieves an F1-score of up to 0.99 for identifying substance-use-related records, 0.98 for detecting the negation status, and 0.94 for identifying temporal status. Moreover, F1-scores of up to 0.98, 0.98, 1.00, 0.92, and 0.98 are achieved for the extraction of the amount, frequency, type, quit-time, and period attributes, respectively. Natural Language Processing (NLP) and rule-based techniques are employed efficiently for extracting substance-use status and attributes, with the proposed system being able to detect substance-use status and attributes over both sentence-level and document-level data. Results show that the proposed system outperforms the compared state-of-the-art substance-use identification system on an unseen dataset, demonstrating its generalisability

    Machine learning-based affect detection within the context of human-horse interaction

    Get PDF
    This chapter focuses on the use of machine learning techniques within the field of affective computing, and more specifically for the task of emotion recognition within the context of human-horse interaction. Affective computing focuses on the detection and interpretation of human emotion, an application that could significantly benefit quantitative studies in the field of animal assisted therapy. The chapter offers a thorough description, an experimental design, and experimental results on the use of physiological signals, such as electroencephalography (EEG), electrocardiography (ECG), and electromyography (EMG) signals, for the creation and evaluation of machine learning models for the prediction of the emotional state of an individual during interaction with horses

    BED: A new dataset for EEG-based biometrics

    Get PDF
    Various recent research works have focused on the use of electroencephalography (EEG) signals in the field of biometrics. However, advances in this area have somehow been limited by the absence of a common testbed that would make it possible to easily compare the performance of different proposals. In this work, we present a dataset that has been specifically designed to allow researchers to attempt new biometric approaches that use EEG signals captured by using relatively inexpensive consumer-grade devices. The proposed dataset has been made publicly accessible and can be downloaded from https://doi.org/10.5281/zenodo.4309471. It contains EEG recordings and responses from 21 individuals, captured under 12 different stimuli across three sessions. The selected stimuli included traditional approaches, as well as stimuli that aim to elicit concrete affective states, in order to facilitate future studies related to the influence of emotions on the EEG signals in the context of biometrics. The captured data were checked for consistency and a performance study was also carried out in order to establish a baseline for the tasks of subject verification and identification

    DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices

    Get PDF
    We present DREAMER, a multi-modal database consisting of electroencephalogram (EEG) and electrocardiogram (ECG) signals recorded during affect elicitation by means of audio-visual stimuli. Signals from 23 participants were recorded along with the participants’ self-assessment of their affective state after each stimuli, in terms of valence, arousal, and dominance. All the signals were captured using portable, wearable, wireless, low-cost and off-the-shelf equipment that has the potential to allow the use of affective computing methods in everyday applications. The Emotiv EPOC wireless EEG headset was used for EEG and the Shimmer2 ECG sensor for ECG. Classification results for valence, arousal and dominance of the proposed database are comparable to the ones achieved for other databases that use non-portable, expensive, medical grade devices. The proposed database is made publicly available in order to allow researchers to achieve a more thorough evaluation of the suitability of these capturing devices for affect recognition applications. Please cite as: S. Katsigiannis, N. Ramzan, “DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices,” IEEE Journal of Biomedical and Health Informatics, vol. 22, no. 1, pp. 98-107, Jan. 2018. doi: 10.1109/JBHI.2017.268823
    • …
    corecore